Mesenchymal Stem Cell Therapy on Tendon/Ligament Healing.
نویسندگان
چکیده
A normal healing response after ligament and tendon rupture results in scar formation and an inferior tissue that fails to emulate its original structure, composition, and function. More regenerative healing (closer to the original) can be obtained through early suppression of inflammatory cells and associated cytokines. Examination of the immune mediated response of mesenchymal stem/stromal cells (MSCs) during healing indicates that MSCs reprogram macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Based on these studies our objective was to treat ligament and tendon injuries with MSCs in order to modulate their inflammatory response. Our initial studies using allogeneic cells demonstrated an in vivo dose dependency of MSCs on ligament healing. Medial collateral ligaments (MCLs) treated with 1 × 106 (low dose) MSCs exhibited less inflammation and a reduced number of M1 macrophages compared to ligaments treated with 4 × 106 (high dose) MSCs. Strength of ligament was also improved with the low dose treatment. We then examined the in vivo effects of MSCs that had been preconditioned to be more anti-inflammatory. Treatment with these preconditioned MSCs was compared with normally processed (unconditioned) MSCs using the rat Achilles tendon and MCL healing models. Pre-conditioned MSCs significantly reduced inflammation by increasing the M2 macrophages and decreasing the M1 macrophages. Most importantly, treatment with pre-conditioned MSCs improved tissue strength to levels comparable to intact tissue. Overall, pre-conditioned MSC-treatment out-performed unconditioned MSCs to improve ligament and tendon healing by stimulating a more robust, paracrine-mediated immunosuppressive response.
منابع مشابه
Mechanical Loading Improves Tendon-Bone Healing in a Rabbit Anterior Cruciate Ligament Reconstruction Model by Promoting Proliferation and Matrix Formation of Mesenchymal Stem Cells and Tendon Cells.
BACKGROUND/AIMS This study investigated the effect of mechanical stress on tendon-bone healing in a rabbit anterior cruciate ligament (ACL) reconstruction model as well as cell proliferation and matrix formation in co-culture of bone-marrow mesenchymal stem cells (BMSCs) and tendon cells (TCs). METHODS The effect of continuous passive motion (CPM) therapy on tendon-bone healing in a rabbit AC...
متن کاملEarly Graft Tunnel Healing After Anterior Cruciate Ligament Reconstruction With Intratunnel Injection of Bone Marrow Mesenchymal Stem Cells and Vascular Endothelial Growth Factor
BACKGROUND Bone marrow mesenchymal stem cells (BM-MSCs) are multipotent adult stem cells and have become an important source of cells for engineering tissue repair and cell therapy. Vascular endothelial growth factor (VEGF) promotes angiogenesis and contributes fibrous integration between tendon and bone during the early postoperative stage. Both MSCs and VEGF can stimulate cell proliferation, ...
متن کاملUse of Undifferentiated Cultured Bone Marrow-Derived Mesenchymal Stem Cells for DDF Tendon Injuries Repair in Rabbits: A Quantitative and Qualitative Histopathological Study
Objective- To investigate the effect of intratendinous injection of bMSCs on the rate and extent of tendon healing after primary repair in a rabbit model. Design- Experimental study. Animals- Twenty seven skeletally mature New Zealand white rabbits weighing 1.8- 2.5 kg were used. Twenty rabbits were used as the experimental animals, and seven others were used as a source of bone marrow-derived ...
متن کاملBone marrow cell transplantation efficiently repairs tendon and ligament injuries
INTRODUCTION Growth factors such as transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF) have been associated with the tendon healing process (Molloy et al., 2003; Zhang et al., 2003; Halper, 2014). Among these growth factors, TGFβ1 plays a key role ...
متن کاملEffects of rabbit pinna-derived blastema cells on tendon healing
Objective(s): Tendon healing is substantially slow and often associated with suboptimal repair. Cell therapy is one of the promising methods to improve tendon repair. Blastema, a population of undifferentiated cells, represents characteristics of pluripotent mesenchymal stem cells and has the potentials to be used in regenerative medicine. The aim of this study was to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cytokine biology
دوره 2 1 شماره
صفحات -
تاریخ انتشار 2017